

THE CEMENT & CONCRETE INDUSTRY: READY FOR FUTURE CHALLENGES !!!

1 NOVEMBER 2018 Finnish Concrete Industry Association

Koen Coppenholle, Chief Executive CEMBUREAU

WHAT WILL THE FUTURE LOOK LIKE ?

POPULATION GROWTH

World Population

Projected world population until 2100

1990
2015
2030
2050
2100
2100

Source: United Nations Department of Economic and Social Affairs, Population Division, *World Population Prospects: The 2015 Revision* Produced by: United Nations Department of Public Information

- 2 out of 3 people will live in cities
- Growth will concentrate in Africa & Asia / decrease in Russia, Japan, Europe
- Need for housing and infrastructure

WHAT PEOPLE WANT

DURABILITY

RESILIENCE

DURABILITY

AFFORDABILITY

DIGITAL HIGHWAYS ...

ENERGY EFFICIENT BUILDINGS

ELECTRICAL CARS

LESS CO₂

ARE CEMENT & CONCRETE PART OF IT ?

WE CAN OFFER SOLUTIONS

ENERGY

SAFE DRINKING WATER

CONCRETE AS ENABLER FOR THE LOW CARBON ECONOMY

SUSTAINABLE TRANSPORT

RENEWABLE ENERGY

THERMAL MASS

HOW WILL WE TACKLE IT?

SOME BACKGROUND: CEMENT PRODUCTION 2016

EVOLUTION SINCE 2001

169 million tonnes 225 million tonnes

4.1 bn tonnes

2.4 bn tonnes 661 million tonnes

75.4 million tonnes 30 million tonnes

85.9 million tonnes

88 million tonnes

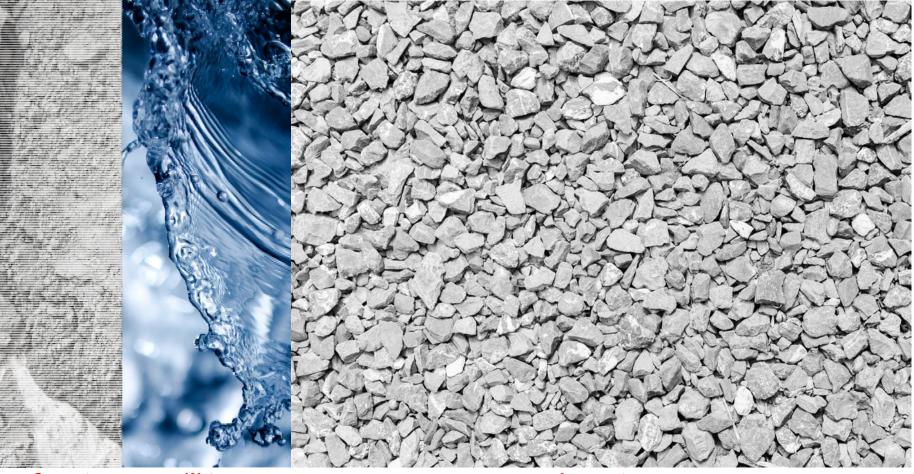
290 million tonnes 102 million tonnes

CEMENT CONSUMPTION PER CAPITA: WORLD OVERVIEW

• World (cement consumption kg/inhab.)

1913	1953	1993	2013	2014	2015	2016
25	68	232	557	553	574	565

• Some consumers categorized by size (cement consumption kg/inhab.)


Large		Medium		Small	
Qatar	2950	Russia	436	Burundi	19
Saudi Arabia	1922	EU28	307	Rwanda	45
China	1705 (300 in 1993, 6 in 1953)	USA	287	Chad	57
		India	208 (65 in 1993, 10 in 1953)		

Source: ICR, Global Cement Report, 12th Edition, June 2017 & CEMBUREAU, World Cement Market in Figures, 1913-1995

SMALL REMINDER ...

Concrete =

Cement (10%-15%) Water (15%-20%) Aggregates (65%-75%)

TAKING RESPONSIBILITY ALONG THE SUPPLY CHAIN

quarries

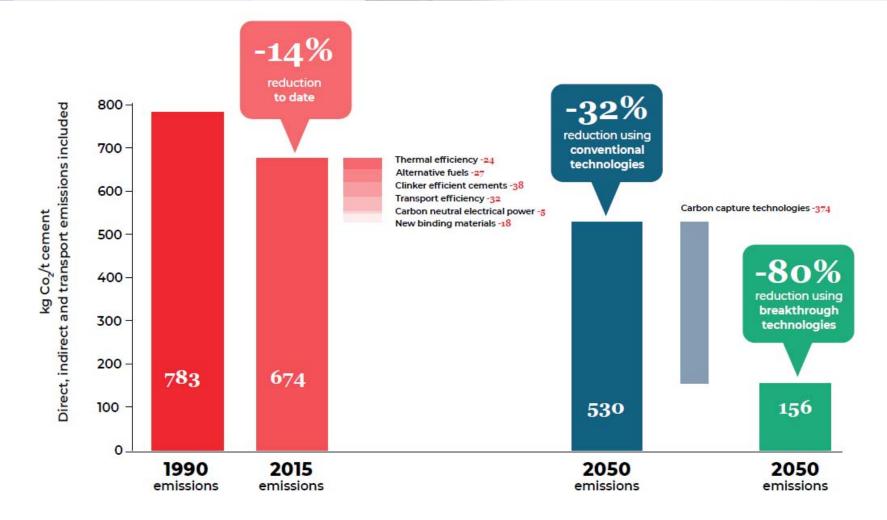
raw materials

fuels

clinker & cement production

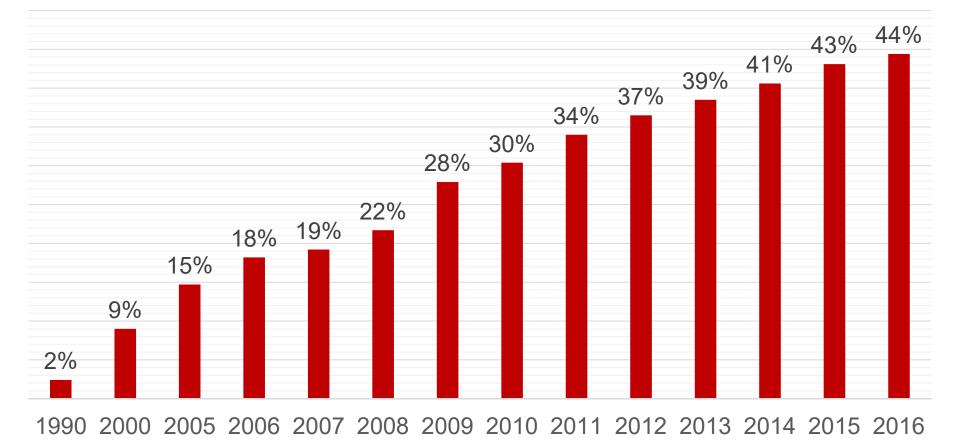
CO₂ and ENERGY INTENSIVE

concrete in the built environment


recycling end-of-life

LOW CARBON PRODUCT THAT CONTRIBUTES TO **CARBON NEUTRALITY ALONG THE VALUE CHAIN**

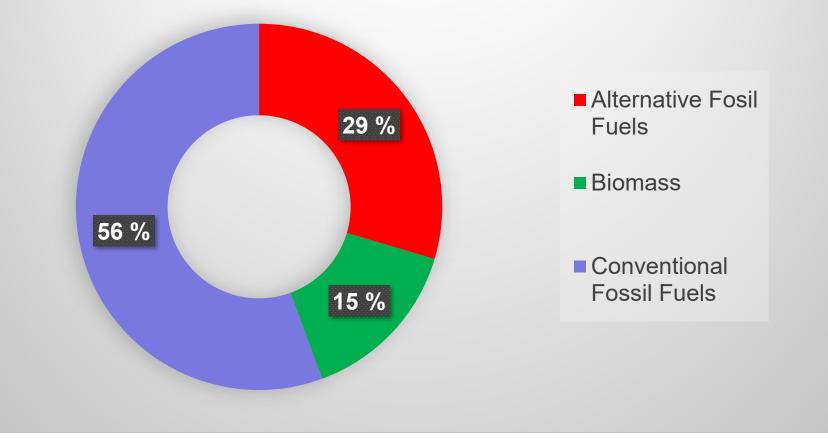
CO₂ REDUCTION MEASURES: 2050 PERSPECTIVE



Source: ECRA and CEMBUREAU own calculations

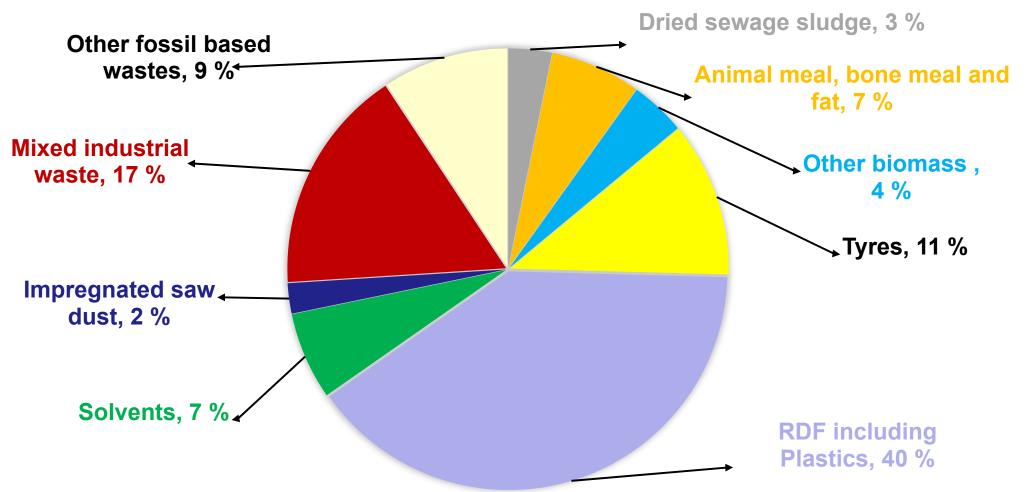
Note: Other technologies (e.g. electrical efficiency, alternative raw materials) not displayed as long term reduction potentials are severely limited

% of Thermal energy from Alternative Fuels in the Cement sector in the EU-28



REPLACING FOSSIL FUELS ...

ALTERNATIVE FUELS STATISTICS


THERMAL ENERGY CONSUMPTION BY FUEL TYPE for the year 2016

INDUSTRIAL SYMBIOSIS CHAMPIONS

BREAKDOWN OF ALTERNATIVE FUELS 2016

INVESTING IN BREAKTHROUGH TECHNOLOGIES TO REDUCE PROCESS CO₂ EMISSIONS

Carbon capture

Post-combustion: Norcem Brevik project (pilot testing); CEMCAP prototype Oxyfuel: ECRA, LafargeHolcim / Air Liquide / FLSmidth, CEMCAP Move to industrial scale oxyfuel / EUR 90 MM funding required

Carbon re-use

HEIDELBERGCEMENT

R&D with support of EU funding

- algae cultivation; methane, CO₂ carbonation
 - develop non-hydraulic binder to produce cement (less limestone / lower kiln temperatures) / 30% less CO₂
 - concrete production through mineral carbonation of non-hydraulic binder, capturing 300 kg CO₂/t cement

Clinker substitution / Lower Carbon Cements

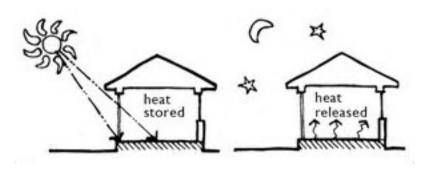
- Continued reduction efforts but constraints (availability of raw materials; product quality,...)

New binders / Novel cements

- Low energy demand / CO₂ reduction (around 50%)
- Niche applications / early development
 - CSA cements, Celitement, Carbonation hardening cement, Magnesium based cements,...

Product durability remains key (www.nanocem.org)

- Research on impact of different cement types or materials in concrete mix on product quality

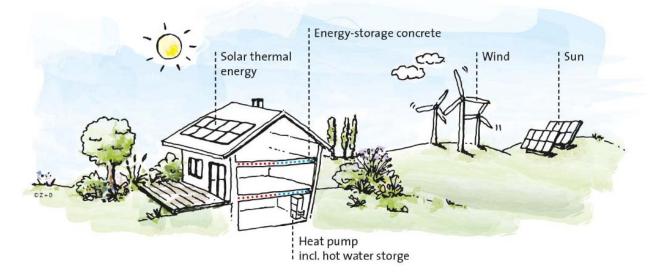

INNOVATION

GOING DOWN THE VALUE CHAIN

- Thermal mass of concrete
- Energy storage capacity of concrete
- 25% CO₂ reduction per dwelling / 50% reduction in the need for peak electricity supply capacity / savings up to EUR 300 per household per year

- Durable: life cycle between 50-100 years
- **Resilient**: fire-safe; withstands extreme weather conditions

THERMAL MASS ACTIVATION



One sustainable solution!

www.zement.at

Thermal storage of peak loads within the building structure by

- activation of massive building parts in
- nearly zero energy buildings with energy supply
- via heat pump linked to the grid

END OF LIFE / RECARBONATION & RECYCLING

- Concrete recycling: crushed concrete can be used as an aggregate in concrete or as a foundation or backfilling for many applications
- Recarbonation: exposure of crushed concrete at end of life increases CO₂ uptake through contact of concrete with air / proper recycling allows 25% of originally emitted CO₂ to be recycled / further research ongoing

CONCRETE RECYCLING: NATIONAL ACTION REQUIRED

C&DW = 25%-30% of all waste generated in the EU

- In a lifetime, an average EU citizen generates 160 tons of C&DW
- WFD sets a 70% C&DW recycling target by 2020

Protocol focuses on

- improved waste identification, source separation and collection
- improved waste logistics
- improved waste processing

EU Construction & Demolition Waste Management Protocol

A FACILITATING REGULATORY FRAMEWORK

OVERALL NEED FOR

- Level playing field
- Material neutrality

For recovery of energy and recycling of materials from waste, we need

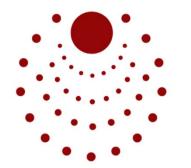
- Landfill ban
- National barriers to be addressed
- Material recycling counting towards national recycling targets

For breakthrough technologies:

Consistent and accessible public financing / risk financing

At the demolition phase

 Join up with the building sector to increase recyclability of concrete at the end of life


For cement and concrete in the built environment

- Standards and building codes that combine environmental, reliability and durability criteria
- A building life cycle approach
- Recognition of thermal mass and thermal energy storage in energy efficiency and grid discussions

WE NEED THE FULL VALUE CHAIN TO ENGAGE

That is why we developed the 5C approach ...

CLINKER CEMENT CONCRETE CONSTRUCTION CARBONATION

https://lowcarboneconomy.cembureau.eu/

THANK YOU FOR YOUR ATTENTION

Follow us on Twitter! @CEMBUREAU www.cembureau.eu